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Abstract--The growth of capillary ripples on a thin liquid film flowing concurrently with a high velocity 
gas flow is explored. In particular, a mechanism is examined whereby the ripples receive their energy from 
pressures and shear stresses exerted at the wave surface by the gas. The predicted wavelength of the most 
rapidly growing wave is found to be affected by system variables in the same manner as the measured 
distance between ripple crests. However, the magnitude of the predicted wavelength is one-half the 
observed wavelength. This could be explained by arguing that finite-amplitude two-dimensional waves are 
unstable to three-dimensional disturbances which cause alternate peaks and valleys along the crest of the 
original two-dimensional wave pattern. 
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1. I N T R O D U C T I O N  

The wave structure at the interface of a high velocity (> 20 m/s) turbulent gas flow and a liquid 
film flowing along a solid boundary has received considerable attention because of its importance 
in understanding interracial stresses in annular flows (Hewitt & Hall-Taylor 1970; Asali et al. 1985; 
Hanratty 1991). 

At low liquid flow rates, the film is covered by long-crested slow moving "ripples" having a steep 
front and a low ratio of the amplitude (10-20 #m) to the wavelength (2-3 mm). Between the tipples 
the surface is smooth and the flow appears laminar. At sufficiently high liquid flow rates 
"disturbance" or "roll waves" appear on the film. These have a much larger velocity than the 
tipples and a very large spacing between successive waves. For flow in a small-diameter pipe the 
roll waves appear as frothy tings which cover the whole pipe circumference, and the distance 
between successive waves is several pipe diameters. 

In this paper an analysis of the tipple waves is presented. The goals are to identify the physical 
processes responsible for their appearance and to predict the characteristic distance between them. 
This length scale is of considerable importance in chzracterizing interfacial stress in vertical 
gas-liquid annular flows. For example, Andritsos & Hanratty (1987) and Bontozoglou & Hanratty 
(1989) have argued that in separated flows the ratio of the interracial drag to that for a smooth 
surface should scale with Ah/2, where Ah is the wave height and 2 is the wavelength. Relations 
for Ah and 2 are needed to test this idea. 

The approach taken is to solve the linear momentum equations to determine the growth rate 
of small-amplitude two-dimensional wavelike disturbances at the interface. It is argued that the 
fastest growing wave is the precursor of the tipples (see Taylor 1963). In carrying out the analysis 
it is convenient to consider separately the gas and liquid flows. In this framework the gas flow is 
found to affect the stability of the liquid film through the imposition of pressure and shear forces 
at the interface. The prediction of the pressure and shear stress variation along a wavy surface over 
which a turbulent gas is flowing then becomes the central problem in analyzing the growth of 
small-amplitude disturbances. 

The thicknesses of the films on which these ripple waves occur are quite small. For example, at 
a liquid Reynolds number of 36 and a gas Reynolds number of 78,000, a water film on the wall 
of a 4.2 cm pipe would have a height of 147 #m. This dictates that the analysis consider wavelengths 
which are large enough for a shallow-liquid assumption to be made, yet small enough that surface 
tension effects are important. 

It is found that the initial growth of such waves is governed by an imbalance between the 
destabilizing effects of inertia, the component of the surface shear stress in phase with the wave 
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slope, the component of the surface pressure in phase with the wave height, and the stabilizing effect 
of surface tension. These waves, then, seem to fit in the "slow wave" category first discussed by 
Craik (1966). However, because Craik was concentrating on horizontal flows at much lower gas 
velocities, the waves being considered in this paper have important differences. 

For the conditions at which Craik observed the initiation of "slow waves," stability theory 
indicates stabilization by both gravity and surface tension and a negligible destabilizing effect of 
inertia. By carrying out calculations for neutral stability, critical conditions for the appearance of 
waves are obtained. Instability occurs for arbitrarily thin liquid layers and a critical film height 
exists, above which the system is stable (as was found by Craik). When calculations are carried 
out at low gas velocities the results on the critical film height do not agree with the laboratory 
observations of slow waves by Craik. It, therefore, appears that the stability theory developed by 
Craik is more applicable to the capillary ripples discussed in this paper than to the "slow waves" 
discovered by him. 

A number of previous authors have described the properties of ripple waves (Wiirz 1977; 
Taylor 1963; Shearer & Nedderman 1965). However, the only systematic results on the influence 
of flow variables on the wavelength have been given by Wiirz (1977) in his study of a water film 
flowing along the bottom wall of a horizontal rectangular 25 × 60 mm channel through which air 
at velocities of 68.1, 118.9 and 173.8 m/s was flowing. The results of the analysis are compared with 
these measurements of Wiirz (1977) as well as with measurements by Asali (1984) for the concurrent 
flow of liquid films, with viscosities of 1.1 and 2.0 cP, and air, with velocities of 28.9, 40.9, 48.2 
and 56.1 m/s up a 4.2 cm tube. 

A principal finding in this paper is that the ripple waves are primarily associated with 
wave-induced gas-phase shear stress variations. We conclude that nonlinear processes cause 
two-dimensional unstable waves to develop into a three-dimensional wave pattern with a distance 
between crests equal to twice the wavelength of the initial instability, since ripple spacings 
calculated in this way are very close to measurements. It is found that the ratio of the ripple spacing 
to the height of the wall film is a function of three dimensionless groups: the liquid film Reynolds 
number, (].lLp~2/~lGp 1/2) and (tr/V~#G). The results are probably too complicated to use directly, 
so their main value will be in guiding the development of empirical relations. 

Details on the analysis and on the experiments may be found in a thesis by one of the authors 
(Asali 1984). The method of analysis is also outlined in a review article (Hanratty 1983) in which 
a mechanism is proposed for the generation of capillary ripples on thin films. This paper gives 
a much more detailed account of the evidence supporting this proposition. Attention is called to 
recent papers by Jurman & McCready (1989) and by Jurman et al. (1989) which expand on the 
analyses of thin films presented by Hanratty (1983). 

2.  A N A L Y S I S  

(a) Equation for the complex wave velocity 

A disturbance of the form 

h' = a exp ict(x - Ct) [l] 

is imposed on the interface of the fully developed gas-liquid flow depicted in figure 1. Here h' is 
the displacement of the interface from its time-averaged location, x is the distance in the direction 
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F igure  1. System being analyzed.  
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of flow and t is the time. The amplitude of the disturbance, a, and the wavenumber, 0t = 2n/2, are 
real positive quantities. The wave velocity, C, is complex, 

C ---- Crt + iCi, [2] 

and the most rapidly growing wave is the one for which otCi is a maximum. 
The velocity in the liquid film, u(y), varies from zero at the wall, y = 0, to a maximum at the 

interface, y = h. An average velocity and a shape factor are defined as 

u~ = ~ u dy [31 

and 

F = ~ u 2 dy. [4] 

The interracial wave is accompanied by two-dimensional disturbances in the fully developed 
velocity fields, in the gas-phase pressure and shear stress at the interface and in the shear stress 
at the wall. 

The amplitude of the wave is assumed small enough that it induces a linear response in the 
velocity and stress fields, so that the disturbances can be represented as 

t F p / t t u a Ps Zs Zw 
-7- = ~ = ~ss = :-- = ":- = a exp i ~ ( x  --  C t ) .  [5] 
U a F TS "~w 

The amplitudes afi~, a/~, af  s, aPs and afw are complex. Thus, if only the real parts of [1] and [5] 
are considered, 

h'  = a exp(otCi t)cos ot(x - CR t), [6] 

e~ = a exp(otCit) [JaSR COS Ot(X --  CRt )  --/SSl sin ot(x -- CRt)] [7] 

and 

r ~ = a exp(otCi t)[¢SR COS ot (X -- CRt  ) -- 'ESl sin ot (x -- CR t)]. [8] 

The amplitudes a/~ss and aCss are the components of P~ and ~ in phase with the wave amplitude; 
the amplitudes a/~sl and aCsl are the components in phase with the wave slope. 

An equation for C, in terms of fi,,/~,/~s, cs and ¢w is obtained from a consideration of integral 
forms of the mass and momentum balance equations for the film. These balance equations are 
simplified by making a shallow-water assumption, whereby the pressure in the liquid is given as 

02h 
P = Ps + g ( h  - Y)PL sin [3 -- a Ox2,  [9] 

where a is the surface tension, g is the acceleration of gravity, PL is the liquid density and [3 is the 
inclination of the channel. 

The accuracy of [9] depends on an assumption similar to that made in boundary-layer theory 
since wavelength, 2, and film height, ~, characterize spatial variations in the x- and y-directions. 
By applying such scaling to the Navier-Stokes equations, it is found (as in boundary-layer theory) 
that the ratio of the inertia terms in the y-momentum equation to the inertia terms in the 
x-momentum equation is of the order (otli). Furthermore, the ratio of the viscous terms to the 
inertia terms in the y-momentum equation is of the order (otJ~ReL)-', where ReL is the film Reynolds 
number defined as ~IT,)/VL. Equation [9] is then obtained by integrating the y-momentum equation, 
assuming ot~ReL is of order unity or greater and that terms of order (oth-) 2 can be neglected. A formal 
derivation of  this result can be found in the paper by Alekseenko et al. (1985), which also presents 
a justification for using integral methods to calculate waves on thin liquid films. 

The following equation for the complex wave velocity is obtained by Hanratty (1983) after 
linearizing these integral balance equations and substituting [5]: 

__¢s _ i {w i ( f s -  fw) ~-/;/Ss +g/ ;s in  [3 + ot2a~- [10] C2 + a 2 r -  2 f t J~C - l i a ~  = i 
PLOt PL ot Ot~PL PL PL 
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The quantities on the left-hand side of [10] represent the inertia terms. For a plug flow in the film 
(/~ = 1 and/~ = 0) they are equal to (ua - C) 2 and, consequently, always destabilizing. For ffa = C 
the effects of inertia vanish for a plug flow. They also vanish for C = 2~a and F = 4/3. However, 
in general, inertia can be stabilizing or destabilizing. 

The real and imaginary parts of [10] yield two equations defining CR and CI: 

a~/3sR a2a~ _ C 2 + C ~ _ 2 r a a C R + r a 2 a _ ] a 2 a P R =  _ is__L+ fw, + +g/ / s in f l  + - -  [11] 
PL ~ PL a PL a PL 

and 

with 

- -  ~ a 21"~l "31- 2 C I ( C R - "F/~a) - -  

fSR fWR (fS--fW) aT/Psi 
- - ,  [12] 

a P E  a P E  a ~ p L  PL a 

fs - fw dP 
- PLg COS fl =~.  [13] 

/i dx 

Since fWR is strongly related to CR, [12] may be viewed as defining CR under neutral stability 
conditions (C~ = 0). This velocity is the kinematic wave velocity defined by Lighthill & Whitman 
(1955). In this context, [11] then defines the dynamic conditions necessary for neutral stability. 

It is to be noted in [11] and [12] that as aTi becomes smaller, for a fixed gas velocity, fSR and 
fSl become more important relative to/3SR and/3Sl. The reason for this, as pointed out by Cohen 
& Hanratty (1965), is that t3 and f, respectively, feed energy into the film through normal velocity 
fluctuations and tangential velocity fluctuations. As a]i~0 the ratio of the normal to the tangential 
velocity fluctuations in the film also approaches zero. 

In order to use [11] and [12] to calculate the fastest growing wave it is necessary to develop 
relations for Zs, /3s, fw and F. 

(b) Evaluation o f /3s  and fs 

The complex amplitudes a~s and a/3s are determined from a solution of the linearized 
momentum equations for the gas. The gas streamlines are compressed in the crest region and are 
expanded in the trough region. Thus, according to the Bernoulli equation, one expects /3SR to be 
negative and destabilizing; i.e. it will supply a suction at the crest. Similarly, because of the 
compression of the streamlines at the crest, ~SR will be positive. Calculations by Benjamin (1959) 
indicate that the maximum in the shear stress occurs upstream of the crest, ~s~ = plus value, and 
that the minimum pressure occurs downstream of the crest, /3s! = plus value. As depicted in 
figure 2, a positive ~s~ would be destabilizing. For a wave propagating in the positive x-direction, 
a positive/3s~ is destabilizing in that it is accompanied by a transmission of energy from the gas 
phase to the disturbance in the liquid. 

Most of the theoretical analyses of interfacial instabilities have used the solution by Benjamin 
(1959), which neglects the effect of turbulence on the wave-induced flow, to predict/3s and ~s. 
Benjamin formulated the linear momentum equations for the gas flow in a curvilinear coordinate 
system which conforms to a small-amplitude sinusoidal wave at the gas-liquid interface. However, 

Xsl = + Destabilizing 
, - ,  

^ 
PSR = - D e s t a b i l i z i n g  

Figure 2. Influence of surface stresses on stability. 
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the nonhomogeneous terms in the momentum equations introduced because of the use of 
curvilinear coordinates were neglected, so that the expressions derived for fs and/~s are the same 
as would be obtained if thc problem were formulated in a cartesian coordinate system. Thorsncss 
et al. (1978) have examined possible errors caused by the neglect of turbulence effects and by the 
use of a Cartesian coordinate system. It was found that these assumptions are valid only for large 
values of the dimensionless wavenumber ~ = vG • Iv*, where vo is the kinematic viscosity of the 
gas and v* = (fs/Po)~/2 is the gas-phase friction velocity. In the range of ~ ~ of interest in thc present 
analysis, considerable errors can be made in evaluating fSR and fSl using the results presented by 
Benjamin (1959). 

The calculations in this paper use a slight modification of the Model D explored by Thorsness 
et al. (1978). This approach is the relaxation analysis of Abrams & Hanratty (1984) or Model D* 
in Abrams (1984). It uses a boundary-layer coordinate system embedded in the wave surface and 
a modification of the van Driest mixing length model outlined by Loyd et al. (1970). 

Values of the amplitude and the phase angle characterizing the calculated variation of Ts and 
Ps, given as the solid lines in figures 3 and 4, agree with measurements of ~s along a solid wavy 
surface for ~ = 4 x l0  -4 to 10 -2. The amplitude is defined as 

with 

and 

= (,~2 _~_ ~2 hi/2 [14] I f s l  ~ SR s , ,  , 

fSR = I~sl COS Or [15] 

~Sl = I'~sl s i n  0,. [16] 

The dashed curves in figures 3 and 4 were calculated using a cartesian coordinate system and a 
quasi laminar assumption (the Benjamin solution in a cartesian coordinate system). Since the wave 
velocities are so small these results for solid waves are used to evaluate ~s and Ps appearing in [10]. 
It is encouraging that Jurman et al. (1989) obtained good agreement with experiments when they 
used Abram's analysis for the gas phase in their studies of waves on liquid films. 

(c) Evaluation o f  zw and r 

For disturbances of very long wavelengths (~] small) the change of height of the liquid with 
distance is gradual enough that the shape of the velocity profile can be closely approximated by 
that which would exist for a flow without a disturbance. Therefore, fw and ? are evaluated by 
assuming the relationships of Zw and F with ua and h are the same as would be determined for 
an undisturbed flow. Furthermore, the film, on which the ripple waves appear, may be considered 
laminar. Details regarding these calculations are presented by Hanratty (1983). 
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Figure 3. Wave-induced variation of the surface shear stress. 
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Figure 4. Wave-induced variation of  the surface pressure. 
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(d) Relations for  wave growth 

For gas flows over very thin films at high gas velocities a number of simplifications in the analysis 
can be made. Since the flow is laminar the average velocity at the interface, as, is equal to ~u,, 
fs --- fw = ~udaLfli. This means that fs/pfi 2 , = 2/ReL. Furthermore, from [13] it is seen that for fully 
developed horizontal flow the group P = ~ / # L U a  may be approximated as 2( fs -  fw)/fw so that 
P ~- -2 / i /H ,  where H is the half height of the gas space. The same estimate can be applied to 
vertical pipes where ~ = dP/dx.  For the high velocity gas flows considered in this paper 2/i/H is 
of the order 1.5 x 10 -3. As a consequence, the term (fs - fw)/etipL in [12] and terms containing 
P in the estimates of F, fw and/~ can be neglected. 

The following approximations can, therefore, be made for small e/i (see Hanratty 1983): 

~<W,s = ~ 3 ( C - 2 )  21/i<Sfs [17] 

For small e}/and small 7i/H, 

1 ( 45C~ 3fs/i 4 
~/~=2-~ 9 0 -  6a / +  fs , r = - 3 .  [18] 

If [17] and [18] are substituted into [11] and [12], the following relations for Ca and Cl are obtained: 

" 1 <st 
. ,  o,_] L Ua_l Lefs [19] 

and 

-(C/~2 + (CRy2---5 (CR'~ + 1 -  ~ (e~)<sit 

\ f i ,  I \ fi, I 2 \ ft, / ~t~ s 

2 V 3 "  /~ss (et/)2a -] 3 Cl 
- -  L ZSi - -  (e~) PLg~ sin 17 ~ -] q [20] 

ReL 2 efs efs fs ReL(ell) ua 

where Ret = hUJVL is the liquid film Reynolds number. (Equations [19] and [20] are obtained from 
[5.3] and [5.4] in Hanratty (1983) if P = 0 and fs = Pa~ are substituted.) 

Equations [19] and [20] can be further simplified if terms multiplied by (~ )  and (e~ReL can be 
ignored. The following results are obtained: 

C-ZR = 2 [21] 
aa 

and 

[ ~ (eti)2~] 3 C, 
- 2 3 <s_AL _ (eli) PLg/i s i n  17 f-~ J + - - - .  [22] 

0 = ~ L  2 ef s fS ReLe/i lia 

It is tO be noted in this case that the inertia terms vanish. They are neither stabilizing nor 
destabilizing. 

This simplification can lead to error for high velocity gas flows, the case being considered in this 
paper. Under these circumstances, one can have a large ReL even though the film is very thin. From 
figures 3 and 4 the following estimates can be made in the range of e~ of interest to this problem: 

<s__&R~ <sl ___.7, / ~ s ~  -78,  --=/~sl~ +45. [23] 
eh eh eh eh 

The film thickness is of the order of 10 -3 cm, the wavelength 10 -1 cm and (eli) --- 0.06. Therefore, 
terms involving <sl and Psa could be of equal importance in [20] and <SR is slightly more important 
than Psi in [191. From [231 it is estimated that 

e/i <SR ,,~ 0.4 = [24] 
O~fs 
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This indicates that, unless 0t~Re L is a large number, CR/6a is slightly larger than 2. Because of this, 
the inertia terms 

in [20], under most circumstances, are greater than zero. This can be an important destabilizing 
effect. 

For a vertical flow the gravity term in [20] is identically zero so that surface tension is the only 
stabilizing influence. For the range of conditions covered in the experiments of Wiirz (1977) in a 
horizontal channel, it is also found that the surface tension term is far more important than gravity. 

Therefore, the picture that emerges from a consideration of [19] and [20] is as follows. Wave 
growth (CI = plus value) is governed by the imbalance between the destabilizing effects of inertia, 
fSl and/~sa, and the stabilizing effect of surface tension. Inertia is usually destabilizing because fsa 
and/sSl cause the wave velocity, as defined by [19], to be greater than the velocity of the liquid 
at the interface. The terms involving fsa, fSl,/5OR and Pol are functions of ~ = (~h')/(h~). For thin 
laminar films, h~ = 1.414Re°'5(#Lpg2/#op[/2 ). Therefore, [19] and [20] indicate that 

and 

CR=fl ( ~ ,  ~ ,  ReL, ~Lff~------~2~ 
/~a \ U G # G  ~IGpLI2/ 

C__[l = f2 ~ ,  V--~G, ReL, 
u. #opL/2)" 

[25] 

[26] 

3. MEASUREMENTS OF WAVELENGTHS 

Measurements of wavelengths of capillary ripples observed on thin liquid layers at high gas 
velocities were made in a facility built by Asali (1984) and described by Asali et al. (1985). Air and 
liquid flowed vertically up a 4.2 cm plexiglass tube that is 9 m long and has dia = 4.2 cm. Water 
(1.1 cP) or a water-glycerine solution (2.0 cP) were introduced into the pipeline through a slot 
which admitted the liquid as an annular film along the wall at a small enough rate that no liquid 
was entrained in the gas. The pipe emptied into a 15.2 cm dia cylindrical manifold, 1.72 m long, 
which was connected to a separator to remove liquid from the air that discharges into the 
laboratory. The liquid was recirculated through a shell and tube heat exchanger to control the 
temperature. 

The pressure drop was measured by using two liquid-flied manometers. Each had one side 
connected to a pressure tap in the test section and the other to a pressure tap in the separator. 
The pressure drop is calculated as the difference between the readings of these two manometers. 
The gauge pressure was measured by using another manometer with one side connected to the top 
in the separator and the other open to the atmosphere. A small continuous liquid purge was used 
to prevent air bubbles from entering the leads to the pressure taps. 

Average liquid film thicknesses, t/, were determined by measuring the conductance between two 
electrodes mounted flush with the pipe wall. Details regarding these measurements are given by 
Asali et al. (1985). 

The average stress at the interface, fs, was calculated, from the measurements of the pressure 
gradient and the film height, with the equation 

es = k - - T - - )  [27j 

where d t is the tube diameter. 
The ripples appearing on the liquid could be seen through the transparent pipe wall. They 

were photographed on 35 mm film and magnified approx. 17 times using a slide projector. Typical 
photographs of the waves are shown in figure 5 for a water film and in figure 6 for a liquid film 
with a viscosity of 2.0 cP. The spacing between ripples in the central portion, where there was little 
distortion because of the pipe curvature, were measured with a meter stick. An arithmetic mean 
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R e  L = 3 5 . 6 0  R e  L = 2 1 . 9 1  
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Figure 5. Ripple waves on a water film. 
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as the  w a v e l e n g t h .  

M e a s u r e m e n t s  o f  the  wave l eng ths ,  o b t a i n e d  in this w a y  are  s u m m a r i z e d  in tables  1 a n d  2 and  

in f igures 7 and  8, w h e r e  the  cu rves  a re  best  fits o f  the  da ta .  
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Figure 6. Ripple waves on a liquid film with a viscosity of 2.0 cP. 
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Figure 7. Measured average spacing between ripples for a 
water film with a viscosity of  1.1 cP. 
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Figure 8. Measured average spacing between ripples for a 
liquid film with a viscosity of  2.0 cP. 

Wtirz (1977) obtained similar measurements for air-water flow in a horizontal rectangular 
enclosed channel that was 2.54 cm high. Some of  his results are summarized in table 3. 

4. R E S U L T S  

(a) Numerical calculations 
T y p i c a l  v a l u e s  o f  ( a ~ ) R e L ( C l / ~ a )  c a l c u l a t e d  f r o m  [19] a n d  [20] a r e  s h o w n  in  f i g u r e  9 f o r  a f i x e d  

v a l u e  o f  (ptp~2)/(l~p[/2) a n d  a/(V~IZG). F r o m  s u c h  a p l o t ,  v a l u e s  o f  (~h') c o r r e s p o n d i n g  t o  t h e  

m a x i m u m  w a v e  g r o w t h  c a n  b e  c a l c u l a t e d .  

F i g u r e s  10 a n d  11 p r e s e n t  v a l u e s  o f  (~ ' )m~,  f o r  f i x e d  v a l u e s  o f  (lZLpg2)/OOp~ 2) c o r r e s p o n d i n g  

t o  t h e  w a t e r  a n d  t h e  w a t e r - g l y c e r i n e  s o l u t i o n s  t h a t  w e r e  s t u d i e d  ( see  t a b l e s  1 a n d  2). F i g u r e s  12 

Table 1. Ripple wave data obtained for air-water flows in a 4.2 cm vertical pipe 
(PL = 0.99 g/cm 3 and PL = 1.1 cP) 

Po k observed 2). predicted 
Reo Reg (cm) (g/cm 3) (cm) (cm) 

168,000 21.91 5.0 x 10 -3 1.32 x 10 -3 0.174 0.17 
35.6 6.0 x 10 -3 0.188 0.19 
51.35 7.2 × 10 -3 0.176 0.22 

140,000 21.91 6.5 x 10 -3 1.28 x 10 -3 0.257 0.23 
35.6 8.0 x l0 -3 0.233 0.27 
51.35 9.2 × 10 -3 0.252 0.30 

115,000 14.72 6.0 x 10 -3 1.24 x 10 -3 0.28 0.25 
21.91 7.9 × 10 -3 0.292 0.30 
35.6 9.7 x 10 -3 0.318 0.35 
51.35 11.6 x 10 -3 0.309 0.40 

78,100 14.72 10.5 x 10 -3 1.19 x 10 -3 0.509 0.50 
21.91 11.87 x 10 -3 0.465 0.52 
35.6 14.73 x 10 -3 0.518 0.59 

Table 2. Ripple wave data obtained for air-glycerine solution in a 4.2 cm pipe (PL = 1.056 g/cm 3 and /~L = 2.0 cP) 

Po k observed 2). predicted 
Reo ReL (cm) (g/cm 3) (cm) k ~  (cm) aT/ (an")ReL 

168,000 13.75 6.3 x 10 -3 1.32 x 10 -3 0.221 35 0.17 0.18 2.5 
24.33 8.3 x 10 -3 0.227 27 0.20 
34.9 10.0 x 10 -3 0.239 24 0.24 0.26 9.1 

139,000 9.17 6.2 x 10 -3 1.27 x 10 -3 0.252 40.1 0.19 0.16 1.4 
23.27 9.4 x 10 -3 0.286 30.4 0.24 
37.35 12.9 x 10 -3 0.302 23 0.34 0.27 10.2 

116,000 9.9 7.6 x 10 -3 1.20 x 10 -3 0.345 45 0.25 0.14 1.4 
24.12 11.0 x 10 -3 0.343 31 0.31 
32.78 12.8 x 10 -3 0.344 27 0.36 0.23 7.6 

78,000 9.9 12.7 x 10 -3 !.19 x 10 -3 0.524 41 0.40 0.15 1.5 
17.53 15.6 x 10 -3 0.516 33 0.54 
25.15 18.4 x 10 -3 0.547 30 0.56 0.21 5.3 
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Table 3. Ripple wave data obtained by Wfirz (1977) for 
air-water in a 2.54 cm horizontal channel (PL = 1.0 g/cm 3 

and Po = 1.25 x 10 -3 g/cm 3) 

#L 2 observed 22 predicted 
Re L (cm) (cP) (cm) (cm) 

8.2 3.9 × 10 -3 1.05 0.145 0.145 
17 5.8 × 10 -3 0.165 0.165 
27 7.4× 10 3 0,177 0.185 
56 10.9 x 10 -3 0.175 0.258 
9.1 2.8 x 10 -3 1.20 0.085 0.079 

19 4.1 × I0 3 0.096 0.084 
30 5.3 × 10 3 0.091 0.084 
40 6.2 × 10 -3 0.09 0.114 
45 1.5 × 10 3 1.27 0.06 0.043 
11 2.3 x 10 -3 0,062 0.046 
20 3.1 x 10 -3 0.058 0.057 
35 4.2 x 10 -3 0.056 0.068 

and 13 present calculated values of (CR/aa) at (~t~)max. It noted that except for the largest ReL, 
(CR/a~) is greater than 2 and independent of surface tension. This is consistent with the physical 
picture that the waves are kinematic, rather than dynamic. 

(b) Comparison of theory with measurements 
A comparison of the calculated values of 2max and the measured 2 is given in figure 14 and in 

tables 1 and 2. It is noted that the measured 2 are twice the calculated 2 for the maximum growth 
of two-dimensional waves. 

The calculations shown in figures 9-13 used the assumption of a steady laminar flow to 
develop the relationship between the film flow rate and the film height given before [25]. It is 
assumed that this relation still holds locally for films with waves then the time-averaged height 
is given as 

- -  0.5 P'L/~ G h~ = 1.415ReL/-----~/. [28] 
L#oPC-J 

7.00 

6.13 I 

5.25 ~ 3 5  

4.38 

,~ 35.60 

I~" 2.63 

l[ ReL = 21.91 
1.75 [/ Df = 4.2cm 

r/ IXL / PG -tl/2 
0.88 [ "~G 1, "-~L ) =2.13 

Re G = 168,000 

I I I I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 

Figure 9. Typical examples of  values of  calculated growth rates of disturbances. 
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Figure 10. Calculated wavelengths of  maximum growth for 
a water film. 
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Figure 11. Calculated wavelengths of  max imum growth for 
a 2.0 cP film. 
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Figure 12. Calculated velocities of  the fastest growing waves 
on a water film. 
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Figure 13. Calculated velocities of  the fastest growing waves 
on a liquid film with a viscosity of  2.0 cP. 
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Figure 14. Comparison of  calculated and measured spacings 
of  the most  rapidly growing waves. 
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observed by Craik (1966). 
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Measurements by Asali et al. (1985) for the thin films that exist in annular flow give 

l i t  ~ 112\ 
h ~ = 0.781 Re °6 { ~ } .  [29] 

\ ~ G P L  , ]  

If  this value of the film height were used in the calculations the spread of the data points around 
the relation 22 predicted =2  observed is less than is shown in figure 14. 

(c) Comparison of  stability theory with "slow" waves observed by Craik (1966) 

At low gas velocities, [19] and [20] predict a critical film height in a horizontal channel above 
which the film is stable, as shown in figure 15. This type of behavior was predicted by Craik (1966). 
The chief difference in the calculated results presented in figure 15 and the results presented by 
Craik is that more accurate values of fs and/5  s are used. 

Also shown in figure 15 are experimental observations by Craik of the critical film heights below 
which a long-wavelength disturbance appeared on the film. 

Craik (1966) reported results for a 2.54 cm channel, in which the ratio of the wavelength to the 
height of the channel was approx. 0.7 and for a 15.24 cm channel. Only the results for the 2.54 cm 
test section are compared to the calculations because the experiments on which the estimates of 
fs are based were done with a wavelength to channel height ratio of 1. The gas velocity plotted 
in figure 15 is the bulk velocity. The centerline velocity reported in figure 5 of Craik's paper was 
multiplied by a factor, which varied between 0.71 and 0.78, to obtain Uc. 

Craik (1966) used the quasi-laminar model of Benjamin to estimate fs and predicted a transition 
at much smaller liquid heights for the 2.54 cm channel (see figure 11 of his paper) than was 
observed. The calculations presented in figure 15, using a more realistic model for fs, also give film 
heights which are too small. It is concluded that stability theory, as formulated in [19] and [20] 
and by Craik, does not predict the observed critical conditions for a 2.54 cm channel. 

A comparison of figures 16 and 7 shows that the "slow waves" occur at very different conditions, 
Uc = 450 cm/s and ~ = 0.02 to 0.06 cm, than used in the experiments discussed in this paper, 
Uc = 4500 cm/s and 7i = 0.005 to 0.0015 cm. This would suggest that the "slow waves" might not 
be the same as the capillary ripples. 

5. DISCUSSION 

(a) Measurements of wavelengths 

The range of wavelengths shown in tables 1-3 reveals that the waves are capillary waves 
and are not affected by gravity. The values of 0dl are given as 0.13-0.26 in tables 1 and 2 and as 

Ideal 
__Twaveleng th 

3___ 
Observed 
wavelength 

"~---  

N 

(a) Ideal ripples (b) Observed ripples 

Figure 16. Postulated growth of infinitesimal two-dimensional ripples into a finite-amplitude three- 
dimensional wave pattern. 
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0.16-0.47 in table 3. This supports the development of  an integral momentum balance based on 
a shallow-liquid assumption, [9], that ignores terms of  O(~h') 2. The range of  2/7/is 24-28 in tables 
1 and 2 and 13-40 in table 3; this supports the use of  a pseudo-steady-state approximation to 
evaluate the wave-induced variations of  tw and F. 

The range of  (~th')ReL is 1.4-13.4 in tables 1 and 2 and 1.4-22 in table 3. These are large enough 
to insure that [9] is accurate to O(0t~) 2. Furthermore, it is noted that any simplification of  [19] and 
[20] by assuming (~h')ReL is a small number would not be justified. Further discussion of  the range 
of  applicability of  boundary-layer approximation may be found in the paper by Jurman & 
McCready (1989). 

(b) Stability analysis 
The stability analysis is not exact in that it only satisfies integral momentum and mass 

balances. It is justified provided (ah') 2 is small compared to unity, that 2 ~  is large enough that the 
wave-induced variations of  tw and F are approximated by a pseudo-steady-state approximation, 
that 0t~ReL is order unity and that 71/H is small enough that P ~ 0. The results are not absolutely 
correct because the pseudo-steady-state calculation is not exact. 

It is, therefore, of interest to compare dispersion relation [10] with the one derived by Craik 
(1966). Craik used a series method valid for ( ~ ) 3  ~ 1, ~x~Re L < O(1) and ~t]ReLI C I < O(1). His [6.5] 
is reproduced below: 

6 - - 

_ ~/3s . g~ 3 Zs ct2a]+-T-2-+-~,-,-jsin fl + ~ i  - -  . [30] 
PLU~ USF'L ~S p t  0¢/1~ 

Here as is the liquid velocity at the interface and all terms are dimensional. 
If  [17] and [18] are substituted into [10], the following result is obtained from the momentum 

integral analyses presented in this paper, if fs is set equal to #6s/~: 

_ _ (C_ l)2+~(C_ l) +3ir~TiTias]L VLJ '(C_\us l) 
ct2a~ 

pL a2 

7i/~s g~; . ~ /5s 3 "rs 
+_-T-S-+_.-~smfl+._-i--+ i . [31] 

USPL US USPL 2 pLO~U 2 

The conditions for the derivation of  this equation are (~t~) < 1, ~ R e  L i> O(1). Both [30] and [31] 
are obtained assuming f s / ¢ w -  1 or P _-__ 0. 

It is noted that if the term containing (~tT;) 2 is ignored, [30] and [31] are the same except for small 
differences in the coefficients multiplying the inertia terms. This is surprising since different 
restrictions on 0tTiReL are made. The tentative conclusion is that [6.5] of  Craik's (1966) paper can 
be used for large 0t~ReL, but that is then only accurate to O(eth-). 

(c) Interpretation of capillary ripples 
The stability analysis presents a physical interpretation of  the capillary ripples observed at high 

gas velocities that is essentially the same as Craik's (1966) interpretation of  the "slow waves" he 
observed at low gas velocities. The waves evolve from two-dimensional waves that originate from 
the growth of small disturbances on the liquid film. The growth results from an imbalance between 
the stabilizing effect of  surface tension and the destabilizing effects of  inertia, interfacial shear 
stresses in phase with the wave slope (~Sl) and induced interfacial pressures in phase with the wave 
height (/~SR)" The final stationary waves that evolve will receive energy from the air flow through 
shear stress variations in phase with the wave height (~SR) and pressure variations in phase with 
the wave slope (/~Sl). These waves differ from those observed on thicker layers where wave-induced 
shear stress variations do not play an important role. 

It is argued that the observed distance between wave peaks should be close to the 
calculated wavelength of  maximum growth. The comparison of  the calculated 22m,x with observed 
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wavelengths in tables 1-3 indicates that the theory correctly predicts the observed trends in the 
measurements. 

The fact that there is not an exact agreement between the predicted and measured wavelengths 
should not be surprising because the observed waves, although broad-crested, are not two- 
dimensional. However, the result that the measurement is equal to twice the prediction is of interest. 
A possible explanation is that the ripples evolve from a two-dimensional wave with a wavelength 
equal to the fastest growing wave predicted by linear theory. As these waves grow in amplitude 
they become unstable to a spanwise disturbance, as shown in figure 16. According to this picture 
the two-dimensional waves are altered in such a way that the crests break into a group of isolated 
long-crested three-dimensional waves. Such an instability has been explored by McLean et al. 
(1981) for gravity waves on deep fluids. They found that when the steepness ratio of a 
two-dimensional wave reaches a value of  0.13 a transition to a three-dimensional wave pattern, 
with a wavelength in the x-direction twice that of the original wave, is possible. 
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